This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a finite set has exactly one parity. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfitr.g | ⊢ 𝐺 = ( SymGrp ‘ 𝑁 ) | |
| psgnfitr.p | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| psgnfitr.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | psgnfieu | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵 ) → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfitr.g | ⊢ 𝐺 = ( SymGrp ‘ 𝑁 ) | |
| 2 | psgnfitr.p | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | psgnfitr.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝑁 ) | |
| 4 | simpr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵 ) → 𝑄 ∈ 𝐵 ) | |
| 5 | 1 2 | sygbasnfpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵 ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 6 | eqid | ⊢ ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ 𝑁 ) | |
| 7 | 1 6 2 | psgneldm | ⊢ ( 𝑄 ∈ dom ( pmSgn ‘ 𝑁 ) ↔ ( 𝑄 ∈ 𝐵 ∧ dom ( 𝑄 ∖ I ) ∈ Fin ) ) |
| 8 | 4 5 7 | sylanbrc | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵 ) → 𝑄 ∈ dom ( pmSgn ‘ 𝑁 ) ) |
| 9 | 1 3 6 | psgneu | ⊢ ( 𝑄 ∈ dom ( pmSgn ‘ 𝑁 ) → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝐵 ) → ∃! 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑄 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |