This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finitary permutations are the span of the transpositions. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgneldm2 | |- ( D e. V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | eqid | |- { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } |
|
| 6 | 1 4 5 3 | psgnfn | |- N Fn { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } |
| 7 | 6 | fndmi | |- dom N = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } |
| 8 | eqid | |- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
|
| 9 | 2 1 4 8 | symggen | |- ( D e. V -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } ) |
| 10 | 1 | symggrp | |- ( D e. V -> G e. Grp ) |
| 11 | 10 | grpmndd | |- ( D e. V -> G e. Mnd ) |
| 12 | 2 1 4 | symgtrf | |- T C_ ( Base ` G ) |
| 13 | 4 8 | gsumwspan | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 14 | 11 12 13 | sylancl | |- ( D e. V -> ( ( mrCls ` ( SubMnd ` G ) ) ` T ) = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 15 | 9 14 | eqtr3d | |- ( D e. V -> { p e. ( Base ` G ) | dom ( p \ _I ) e. Fin } = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 16 | 7 15 | eqtrid | |- ( D e. V -> dom N = ran ( w e. Word T |-> ( G gsum w ) ) ) |
| 17 | 16 | eleq2d | |- ( D e. V -> ( P e. dom N <-> P e. ran ( w e. Word T |-> ( G gsum w ) ) ) ) |
| 18 | eqid | |- ( w e. Word T |-> ( G gsum w ) ) = ( w e. Word T |-> ( G gsum w ) ) |
|
| 19 | ovex | |- ( G gsum w ) e. _V |
|
| 20 | 18 19 | elrnmpti | |- ( P e. ran ( w e. Word T |-> ( G gsum w ) ) <-> E. w e. Word T P = ( G gsum w ) ) |
| 21 | 17 20 | bitrdi | |- ( D e. V -> ( P e. dom N <-> E. w e. Word T P = ( G gsum w ) ) ) |