This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter1 , prter2 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem14 | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prt | ⊢ ( Prt 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) | |
| 2 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
| 4 | elin | ⊢ ( 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) | |
| 5 | eq0 | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ∀ 𝑤 ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ) | |
| 6 | sp | ⊢ ( ∀ 𝑤 ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) → ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ) |
| 8 | 7 | pm2.21d | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 9 | 4 8 | biimtrrid | ⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 10 | 9 | jao1i | ⊢ ( ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 11 | 3 10 | syl6 | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |