This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ersym.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| ersym.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | ||
| Assertion | ercl | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 2 | ersym.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | |
| 3 | errel | ⊢ ( 𝑅 Er 𝑋 → Rel 𝑅 ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → Rel 𝑅 ) |
| 5 | releldm | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ∈ dom 𝑅 ) | |
| 6 | 4 2 5 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |
| 7 | erdm | ⊢ ( 𝑅 Er 𝑋 → dom 𝑅 = 𝑋 ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → dom 𝑅 = 𝑋 ) |
| 9 | 6 8 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |