This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | n0el | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑢 𝑢 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) | |
| 2 | df-ex | ⊢ ( ∃ 𝑢 𝑢 ∈ 𝑥 ↔ ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑢 𝑢 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) | |
| 5 | imnang | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) | |
| 6 | 0el | ⊢ ( ∅ ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) | |
| 7 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∅ ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 9 | 8 | notbii | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 10 | 4 5 9 | 3bitr4ri | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 11 | 1 3 10 | 3bitr4ri | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑢 𝑢 ∈ 𝑥 ) |