This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prstcnidlem and prstcthin . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| Assertion | prstcval | ⊢ ( 𝜑 → 𝐶 = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | id | ⊢ ( 𝑘 = 𝐾 → 𝑘 = 𝐾 ) | |
| 4 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 5 | 4 | xpeq1d | ⊢ ( 𝑘 = 𝐾 → ( ( le ‘ 𝑘 ) × { 1o } ) = ( ( le ‘ 𝐾 ) × { 1o } ) ) |
| 6 | 5 | opeq2d | ⊢ ( 𝑘 = 𝐾 → 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝑘 ) × { 1o } ) 〉 = 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) |
| 7 | 3 6 | oveq12d | ⊢ ( 𝑘 = 𝐾 → ( 𝑘 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝑘 ) × { 1o } ) 〉 ) = ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝑘 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 9 | df-prstc | ⊢ ProsetToCat = ( 𝑘 ∈ Proset ↦ ( ( 𝑘 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝑘 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) | |
| 10 | ovex | ⊢ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐾 ∈ Proset → ( ProsetToCat ‘ 𝐾 ) = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → ( ProsetToCat ‘ 𝐾 ) = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 13 | 1 12 | eqtrd | ⊢ ( 𝜑 → 𝐶 = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |