This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| prstchomval.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | ||
| Assertion | prstchomval | ⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | prstchomval.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | |
| 4 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 5 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 6 | 5 | simp3i | ⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
| 7 | 1 2 4 6 | prstcnidlem | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
| 8 | fvex | ⊢ ( le ‘ 𝐾 ) ∈ V | |
| 9 | snex | ⊢ { 1o } ∈ V | |
| 10 | 8 9 | xpex | ⊢ ( ( le ‘ 𝐾 ) × { 1o } ) ∈ V |
| 11 | 4 | setsid | ⊢ ( ( 𝐾 ∈ Proset ∧ ( ( le ‘ 𝐾 ) × { 1o } ) ∈ V ) → ( ( le ‘ 𝐾 ) × { 1o } ) = ( Hom ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
| 12 | 2 10 11 | sylancl | ⊢ ( 𝜑 → ( ( le ‘ 𝐾 ) × { 1o } ) = ( Hom ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) | |
| 14 | 1 2 13 | prstcleval | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) ) |
| 15 | 14 3 | eqtr4d | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ≤ ) |
| 16 | 15 | xpeq1d | ⊢ ( 𝜑 → ( ( le ‘ 𝐾 ) × { 1o } ) = ( ≤ × { 1o } ) ) |
| 17 | 7 12 16 | 3eqtr2rd | ⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |