This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| Assertion | prstcprs | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
| 4 | 1 2 3 | prstcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) ) |
| 5 | eqidd | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) | |
| 6 | 1 2 5 | prstcleval | ⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) ) |
| 7 | fvex | ⊢ ( ProsetToCat ‘ 𝐾 ) ∈ V | |
| 8 | 1 7 | eqeltrdi | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 9 | 4 6 8 | isprsd | ⊢ ( 𝜑 → ( 𝐶 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 10 | 3 5 2 | isprsd | ⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 11 | 9 10 | bitr4d | ⊢ ( 𝜑 → ( 𝐶 ∈ Proset ↔ 𝐾 ∈ Proset ) ) |
| 12 | 2 11 | mpbird | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |