This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 27-May-2016) (Revised by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodge0rd.1 | ||
| prodge0rd.2 | |||
| prodge0rd.3 | |||
| Assertion | prodge0rd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodge0rd.1 | ||
| 2 | prodge0rd.2 | ||
| 3 | prodge0rd.3 | ||
| 4 | 0red | ||
| 5 | 1 | rpred | |
| 6 | 5 2 | remulcld | |
| 7 | 4 6 3 | lensymd | |
| 8 | 5 | adantr | |
| 9 | 2 | renegcld | |
| 10 | 9 | adantr | |
| 11 | 1 | rpgt0d | |
| 12 | 11 | adantr | |
| 13 | simpr | ||
| 14 | 8 10 12 13 | mulgt0d | |
| 15 | 5 | recnd | |
| 16 | 15 | adantr | |
| 17 | 2 | recnd | |
| 18 | 17 | adantr | |
| 19 | 16 18 | mulneg2d | |
| 20 | 14 19 | breqtrd | |
| 21 | 20 | ex | |
| 22 | 2 | lt0neg1d | |
| 23 | 6 | lt0neg1d | |
| 24 | 21 22 23 | 3imtr4d | |
| 25 | 7 24 | mtod | |
| 26 | 4 2 25 | nltled |