This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmlem1.n | ⊢ 𝑁 ∈ ℕ | |
| prmlem1.gt | ⊢ 1 < 𝑁 | ||
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 | ||
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 | ||
| prmlem1a.x | ⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) | ||
| Assertion | prmlem1a | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | ⊢ 1 < 𝑁 | |
| 3 | prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 | |
| 4 | prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 | |
| 5 | prmlem1a.x | ⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) | |
| 6 | eluz2b2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) | |
| 7 | 1 2 6 | mpbir2an | ⊢ 𝑁 ∈ ( ℤ≥ ‘ 2 ) |
| 8 | breq1 | ⊢ ( 𝑥 = 2 → ( 𝑥 ∥ 𝑁 ↔ 2 ∥ 𝑁 ) ) | |
| 9 | 8 | notbid | ⊢ ( 𝑥 = 2 → ( ¬ 𝑥 ∥ 𝑁 ↔ ¬ 2 ∥ 𝑁 ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = 2 → ( ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ↔ ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 2 ∥ 𝑁 ) ) ) |
| 11 | prmnn | ⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ℕ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) → 𝑥 ∈ ℕ ) |
| 13 | eldifsn | ⊢ ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) ) | |
| 14 | n2dvds1 | ⊢ ¬ 2 ∥ 1 | |
| 15 | 4 | a1i | ⊢ ( 3 ∈ ℙ → ¬ 3 ∥ 𝑁 ) |
| 16 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
| 17 | 5 15 16 | prmlem0 | ⊢ ( ( ¬ 2 ∥ 3 ∧ 𝑥 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 18 | 1nprm | ⊢ ¬ 1 ∈ ℙ | |
| 19 | 18 | pm2.21i | ⊢ ( 1 ∈ ℙ → ¬ 1 ∥ 𝑁 ) |
| 20 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 21 | 17 19 20 | prmlem0 | ⊢ ( ( ¬ 2 ∥ 1 ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 22 | 14 21 | mpan | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 23 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 24 | 22 23 | eleq2s | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 25 | 24 | expd | ⊢ ( 𝑥 ∈ ℕ → ( 𝑥 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 26 | 13 25 | biimtrrid | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) ) |
| 27 | 12 26 | mpcom | ⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑥 ≠ 2 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
| 28 | 3 | 2a1i | ⊢ ( 𝑥 ∈ ℙ → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 2 ∥ 𝑁 ) ) |
| 29 | 10 27 28 | pm2.61ne | ⊢ ( 𝑥 ∈ ℙ → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
| 30 | 29 | rgen | ⊢ ∀ 𝑥 ∈ ℙ ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) |
| 31 | isprm5 | ⊢ ( 𝑁 ∈ ℙ ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℙ ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) ) | |
| 32 | 7 30 31 | mpbir2an | ⊢ 𝑁 ∈ ℙ |