This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmlem1.n | ⊢ 𝑁 ∈ ℕ | |
| prmlem1.gt | ⊢ 1 < 𝑁 | ||
| prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 | ||
| prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 | ||
| prmlem1.lt | ⊢ 𝑁 < ; 2 5 | ||
| Assertion | prmlem1 | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmlem1.n | ⊢ 𝑁 ∈ ℕ | |
| 2 | prmlem1.gt | ⊢ 1 < 𝑁 | |
| 3 | prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 | |
| 4 | prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 | |
| 5 | prmlem1.lt | ⊢ 𝑁 < ; 2 5 | |
| 6 | eluzelre | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 𝑥 ∈ ℝ ) | |
| 7 | 6 | resqcld | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
| 8 | eluzle | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 5 ≤ 𝑥 ) | |
| 9 | 5re | ⊢ 5 ∈ ℝ | |
| 10 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 11 | 10 | nn0ge0i | ⊢ 0 ≤ 5 |
| 12 | le2sq2 | ⊢ ( ( ( 5 ∈ ℝ ∧ 0 ≤ 5 ) ∧ ( 𝑥 ∈ ℝ ∧ 5 ≤ 𝑥 ) ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) | |
| 13 | 9 11 12 | mpanl12 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 5 ≤ 𝑥 ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
| 14 | 6 8 13 | syl2anc | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
| 15 | 1 | nnrei | ⊢ 𝑁 ∈ ℝ |
| 16 | 9 | resqcli | ⊢ ( 5 ↑ 2 ) ∈ ℝ |
| 17 | 5cn | ⊢ 5 ∈ ℂ | |
| 18 | 17 | sqvali | ⊢ ( 5 ↑ 2 ) = ( 5 · 5 ) |
| 19 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 20 | 18 19 | eqtri | ⊢ ( 5 ↑ 2 ) = ; 2 5 |
| 21 | 5 20 | breqtrri | ⊢ 𝑁 < ( 5 ↑ 2 ) |
| 22 | ltletr | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 5 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 𝑁 < ( 5 ↑ 2 ) ∧ ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) | |
| 23 | 21 22 | mpani | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 5 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
| 24 | 15 16 23 | mp3an12 | ⊢ ( ( 𝑥 ↑ 2 ) ∈ ℝ → ( ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
| 25 | 7 14 24 | sylc | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) |
| 26 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) | |
| 27 | 15 7 26 | sylancr | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) |
| 28 | 25 27 | mpbid | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) |
| 29 | 28 | pm2.21d | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
| 30 | 29 | adantld | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 31 | 30 | adantl | ⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 32 | 1 2 3 4 31 | prmlem1a | ⊢ 𝑁 ∈ ℙ |