This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a number plus an integer greater than 1 and less than or equal to the number is divisible by a prime less than or equal to the number. (Contributed by AV, 15-Aug-2020) (Revised by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsprmop | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsfz | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) | |
| 2 | simprl | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → 𝑝 ≤ 𝑁 ) | |
| 3 | simprr | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → 𝑝 ∥ 𝐼 ) | |
| 4 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 5 | 4 | ad2antlr | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → 𝑝 ∈ ℤ ) |
| 6 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 7 | prmocl | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℕ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ℕ → ( #p ‘ 𝑁 ) ∈ ℕ ) |
| 9 | 8 | nnzd | ⊢ ( 𝑁 ∈ ℕ → ( #p ‘ 𝑁 ) ∈ ℤ ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( #p ‘ 𝑁 ) ∈ ℤ ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( #p ‘ 𝑁 ) ∈ ℤ ) |
| 12 | 11 | adantr | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → ( #p ‘ 𝑁 ) ∈ ℤ ) |
| 13 | elfzelz | ⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) | |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼 ∈ ℤ ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → 𝐼 ∈ ℤ ) |
| 16 | prmdvdsprmo | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑞 ∈ ℙ ( 𝑞 ≤ 𝑁 → 𝑞 ∥ ( #p ‘ 𝑁 ) ) ) | |
| 17 | breq1 | ⊢ ( 𝑞 = 𝑝 → ( 𝑞 ≤ 𝑁 ↔ 𝑝 ≤ 𝑁 ) ) | |
| 18 | breq1 | ⊢ ( 𝑞 = 𝑝 → ( 𝑞 ∥ ( #p ‘ 𝑁 ) ↔ 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑞 = 𝑝 → ( ( 𝑞 ≤ 𝑁 → 𝑞 ∥ ( #p ‘ 𝑁 ) ) ↔ ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) ) |
| 20 | 19 | rspcv | ⊢ ( 𝑝 ∈ ℙ → ( ∀ 𝑞 ∈ ℙ ( 𝑞 ≤ 𝑁 → 𝑞 ∥ ( #p ‘ 𝑁 ) ) → ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) ) |
| 21 | 16 20 | syl5com | ⊢ ( 𝑁 ∈ ℕ → ( 𝑝 ∈ ℙ → ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( 𝑝 ∈ ℙ → ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |
| 24 | 23 | adantrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → 𝑝 ∥ ( #p ‘ 𝑁 ) ) |
| 26 | 5 12 15 25 3 | dvds2addd | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) |
| 27 | 2 3 26 | 3jca | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) → ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) |
| 28 | 27 | ex | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) → ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) ) |
| 29 | 28 | reximdva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) ) |
| 30 | 1 29 | mpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ( ( #p ‘ 𝑁 ) + 𝐼 ) ) ) |