This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a number is divisible by each prime less than or equal to the number. (Contributed by AV, 15-Aug-2020) (Revised by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsprmo | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 2 | diffi | ⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∈ Fin ) | |
| 3 | 1 2 | mp1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∈ Fin ) |
| 4 | eldifi | ⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → 𝑘 ∈ ( 1 ... 𝑁 ) ) | |
| 5 | elfzelz | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → 𝑘 ∈ ℤ ) |
| 7 | 1zzd | ⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → 1 ∈ ℤ ) | |
| 8 | 6 7 | ifcld | ⊢ ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 9 | 8 | adantl | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) ∧ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 10 | 3 9 | fprodzcl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 11 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℤ ) |
| 14 | dvdsmul2 | ⊢ ( ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ∧ 𝑝 ∈ ℤ ) → 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 16 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 17 | prmoval | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑁 ∈ ℕ → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( #p ‘ 𝑁 ) = ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
| 20 | 19 | breq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∥ ( #p ‘ 𝑁 ) ↔ 𝑝 ∥ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
| 21 | neldifsnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ¬ 𝑝 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ) | |
| 22 | disjsn | ⊢ ( ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∩ { 𝑝 } ) = ∅ ↔ ¬ 𝑝 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∩ { 𝑝 } ) = ∅ ) |
| 24 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
| 26 | 25 | anim1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) |
| 27 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 28 | fznn | ⊢ ( 𝑁 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑝 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑁 ) ) ) |
| 31 | 26 30 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ( 1 ... 𝑁 ) ) |
| 32 | difsnid | ⊢ ( 𝑝 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∪ { 𝑝 } ) = ( 1 ... 𝑁 ) ) | |
| 33 | 32 | eqcomd | ⊢ ( 𝑝 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∪ { 𝑝 } ) ) |
| 34 | 31 33 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 1 ... 𝑁 ) = ( ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) ∪ { 𝑝 } ) ) |
| 35 | fzfid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 36 | 1zzd | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℤ ) | |
| 37 | 5 36 | ifcld | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℤ ) |
| 38 | 37 | zcnd | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℂ ) |
| 39 | 38 | adantl | ⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ∈ ℂ ) |
| 40 | 23 34 35 39 | fprodsplit | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) ) |
| 41 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℙ ) | |
| 42 | 25 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℕ ) |
| 43 | 42 | nncnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∈ ℂ ) |
| 44 | 1cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 1 ∈ ℂ ) | |
| 45 | 43 44 | ifcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ∈ ℂ ) |
| 46 | eleq1w | ⊢ ( 𝑘 = 𝑝 → ( 𝑘 ∈ ℙ ↔ 𝑝 ∈ ℙ ) ) | |
| 47 | id | ⊢ ( 𝑘 = 𝑝 → 𝑘 = 𝑝 ) | |
| 48 | 46 47 | ifbieq1d | ⊢ ( 𝑘 = 𝑝 → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ) |
| 49 | 48 | prodsn | ⊢ ( ( 𝑝 ∈ ℙ ∧ if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ) |
| 50 | 41 45 49 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) ) |
| 51 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 52 | 51 | iftrued | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) = 𝑝 ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → if ( 𝑝 ∈ ℙ , 𝑝 , 1 ) = 𝑝 ) |
| 54 | 50 53 | eqtrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 𝑝 ) |
| 55 | 54 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · ∏ 𝑘 ∈ { 𝑝 } if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) = ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 56 | 40 55 | eqtrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) |
| 57 | 56 | breq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∥ ∏ 𝑘 ∈ ( 1 ... 𝑁 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ↔ 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) ) |
| 58 | 20 57 | bitrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → ( 𝑝 ∥ ( #p ‘ 𝑁 ) ↔ 𝑝 ∥ ( ∏ 𝑘 ∈ ( ( 1 ... 𝑁 ) ∖ { 𝑝 } ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) · 𝑝 ) ) ) |
| 59 | 15 58 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≤ 𝑁 ) → 𝑝 ∥ ( #p ‘ 𝑁 ) ) |
| 60 | 59 | ex | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |
| 61 | 60 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 → 𝑝 ∥ ( #p ‘ 𝑁 ) ) ) |