This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a number plus an integer greater than 1 and less than or equal to the number is divisible by a prime less than or equal to the number. (Contributed by AV, 15-Aug-2020) (Revised by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsprmop | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsfz | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I ) ) |
|
| 2 | simprl | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> p <_ N ) |
|
| 3 | simprr | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> p || I ) |
|
| 4 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 5 | 4 | ad2antlr | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> p e. ZZ ) |
| 6 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 7 | prmocl | |- ( N e. NN0 -> ( #p ` N ) e. NN ) |
|
| 8 | 6 7 | syl | |- ( N e. NN -> ( #p ` N ) e. NN ) |
| 9 | 8 | nnzd | |- ( N e. NN -> ( #p ` N ) e. ZZ ) |
| 10 | 9 | adantr | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( #p ` N ) e. ZZ ) |
| 11 | 10 | adantr | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( #p ` N ) e. ZZ ) |
| 12 | 11 | adantr | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> ( #p ` N ) e. ZZ ) |
| 13 | elfzelz | |- ( I e. ( 2 ... N ) -> I e. ZZ ) |
|
| 14 | 13 | ad2antlr | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> I e. ZZ ) |
| 15 | 14 | adantr | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> I e. ZZ ) |
| 16 | prmdvdsprmo | |- ( N e. NN -> A. q e. Prime ( q <_ N -> q || ( #p ` N ) ) ) |
|
| 17 | breq1 | |- ( q = p -> ( q <_ N <-> p <_ N ) ) |
|
| 18 | breq1 | |- ( q = p -> ( q || ( #p ` N ) <-> p || ( #p ` N ) ) ) |
|
| 19 | 17 18 | imbi12d | |- ( q = p -> ( ( q <_ N -> q || ( #p ` N ) ) <-> ( p <_ N -> p || ( #p ` N ) ) ) ) |
| 20 | 19 | rspcv | |- ( p e. Prime -> ( A. q e. Prime ( q <_ N -> q || ( #p ` N ) ) -> ( p <_ N -> p || ( #p ` N ) ) ) ) |
| 21 | 16 20 | syl5com | |- ( N e. NN -> ( p e. Prime -> ( p <_ N -> p || ( #p ` N ) ) ) ) |
| 22 | 21 | adantr | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( p e. Prime -> ( p <_ N -> p || ( #p ` N ) ) ) ) |
| 23 | 22 | imp | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( p <_ N -> p || ( #p ` N ) ) ) |
| 24 | 23 | adantrd | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( ( p <_ N /\ p || I ) -> p || ( #p ` N ) ) ) |
| 25 | 24 | imp | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> p || ( #p ` N ) ) |
| 26 | 5 12 15 25 3 | dvds2addd | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> p || ( ( #p ` N ) + I ) ) |
| 27 | 2 3 26 | 3jca | |- ( ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) /\ ( p <_ N /\ p || I ) ) -> ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) |
| 28 | 27 | ex | |- ( ( ( N e. NN /\ I e. ( 2 ... N ) ) /\ p e. Prime ) -> ( ( p <_ N /\ p || I ) -> ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) ) |
| 29 | 28 | reximdva | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> ( E. p e. Prime ( p <_ N /\ p || I ) -> E. p e. Prime ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) ) |
| 30 | 1 29 | mpd | |- ( ( N e. NN /\ I e. ( 2 ... N ) ) -> E. p e. Prime ( p <_ N /\ p || I /\ p || ( ( #p ` N ) + I ) ) ) |