This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvprmselelfz.f | ⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) | |
| Assertion | fvprmselelfz | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprmselelfz.f | ⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) ) | |
| 2 | eleq1 | ⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ ℙ ↔ 𝑋 ∈ ℙ ) ) | |
| 3 | id | ⊢ ( 𝑚 = 𝑋 → 𝑚 = 𝑋 ) | |
| 4 | 2 3 | ifbieq1d | ⊢ ( 𝑚 = 𝑋 → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) ) |
| 5 | iftrue | ⊢ ( 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 𝑋 ) |
| 7 | 4 6 | sylan9eqr | ⊢ ( ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 𝑋 ) |
| 8 | elfznn | ⊢ ( 𝑋 ∈ ( 1 ... 𝑁 ) → 𝑋 ∈ ℕ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ ℕ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 𝑋 ∈ ℕ ) |
| 11 | 1 7 10 10 | fvmptd2 | ⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
| 12 | simprr | ⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 𝑋 ∈ ( 1 ... 𝑁 ) ) | |
| 13 | 11 12 | eqeltrd | ⊢ ( ( 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |
| 14 | iffalse | ⊢ ( ¬ 𝑋 ∈ ℙ → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) | |
| 15 | 14 | adantr | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → if ( 𝑋 ∈ ℙ , 𝑋 , 1 ) = 1 ) |
| 16 | 4 15 | sylan9eqr | ⊢ ( ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) ∧ 𝑚 = 𝑋 ) → if ( 𝑚 ∈ ℙ , 𝑚 , 1 ) = 1 ) |
| 17 | 9 | adantl | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 𝑋 ∈ ℕ ) |
| 18 | 1nn | ⊢ 1 ∈ ℕ | |
| 19 | 18 | a1i | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 1 ∈ ℕ ) |
| 20 | 1 16 17 19 | fvmptd2 | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 21 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 22 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) | |
| 23 | 21 22 | sylbi | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ( 1 ... 𝑁 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → 1 ∈ ( 1 ... 𝑁 ) ) |
| 26 | 20 25 | eqeltrd | ⊢ ( ( ¬ 𝑋 ∈ ℙ ∧ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |
| 27 | 13 26 | pm2.61ian | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 1 ... 𝑁 ) ) |