This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each integer greater than 1 and less than or equal to a fixed number is divisible by a prime less than or equal to this fixed number. (Contributed by AV, 15-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsfz | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | ⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ( ℤ≥ ‘ 2 ) ) |
| 3 | exprmfct | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐼 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐼 ) |
| 5 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 6 | eluz2nn | ⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 2 ) → 𝐼 ∈ ℕ ) | |
| 7 | 1 6 | syl | ⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℕ ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → 𝐼 ∈ ℕ ) |
| 9 | dvdsle | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐼 ∈ ℕ ) → ( 𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼 ) ) | |
| 10 | 5 8 9 | syl2anr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼 ) ) |
| 11 | elfzle2 | ⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ≤ 𝑁 ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼 ≤ 𝑁 ) |
| 13 | 5 | zred | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℝ ) |
| 15 | elfzelz | ⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℤ ) | |
| 16 | 15 | zred | ⊢ ( 𝐼 ∈ ( 2 ... 𝑁 ) → 𝐼 ∈ ℝ ) |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐼 ∈ ℝ ) |
| 18 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
| 20 | letr | ⊢ ( ( 𝑝 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) → 𝑝 ≤ 𝑁 ) ) | |
| 21 | 14 17 19 20 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁 ) → 𝑝 ≤ 𝑁 ) ) |
| 22 | 12 21 | mpan2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≤ 𝐼 → 𝑝 ≤ 𝑁 ) ) |
| 23 | 10 22 | syld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐼 → 𝑝 ≤ 𝑁 ) ) |
| 24 | 23 | ancrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐼 → ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) ) |
| 25 | 24 | reximdva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝐼 → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) ) |
| 26 | 4 25 | mpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 2 ... 𝑁 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ) ) |