This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmdvdsncoprmbd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℕ ) | |
| prmdvdsncoprmbd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℕ ) | ||
| Assertion | prmdvdsncoprmbd | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsncoprmbd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℕ ) | |
| 2 | prmdvdsncoprmbd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℕ ) | |
| 3 | prmuz2 | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 5 | 4 | anim1d | ⊢ ( 𝜑 → ( ( 𝑝 ∈ ℙ ∧ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) → ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) ) |
| 6 | 5 | reximdv2 | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → ∃ 𝑝 ∈ ( ℤ≥ ‘ 2 ) ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
| 7 | breq1 | ⊢ ( 𝑝 = 𝑖 → ( 𝑝 ∥ 𝐴 ↔ 𝑖 ∥ 𝐴 ) ) | |
| 8 | breq1 | ⊢ ( 𝑝 = 𝑖 → ( 𝑝 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑝 = 𝑖 → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 10 | 9 | cbvrexvw | ⊢ ( ∃ 𝑝 ∈ ( ℤ≥ ‘ 2 ) ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) |
| 11 | 6 10 | imbitrdi | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 12 | exprmfct | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑖 ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑖 ) |
| 14 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∈ ℕ ) |
| 16 | 15 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∈ ℤ ) |
| 17 | eluzelz | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℤ ) | |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∈ ℤ ) |
| 19 | 18 | ad4ant24 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∈ ℤ ) |
| 20 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐴 ∈ ℕ ) |
| 21 | 20 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐴 ∈ ℤ ) |
| 22 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∥ 𝑖 ) | |
| 23 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → 𝑖 ∥ 𝐴 ) | |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∥ 𝐴 ) |
| 25 | 16 19 21 22 24 | dvdstrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∥ 𝐴 ) |
| 26 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐵 ∈ ℕ ) |
| 27 | 26 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝐵 ∈ ℤ ) |
| 28 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → 𝑖 ∥ 𝐵 ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑖 ∥ 𝐵 ) |
| 30 | 16 19 27 22 29 | dvdstrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → 𝑝 ∥ 𝐵 ) |
| 31 | 25 30 | jca | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑖 ) → ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 32 | 31 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑖 → ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
| 33 | 32 | reximdva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑖 → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
| 34 | 13 33 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 35 | 34 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
| 36 | 11 35 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 37 | ncoprmgcdne1b | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) | |
| 38 | 1 2 37 | syl2anc | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 39 | 36 38 | bitrd | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |