This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ncoprmgcdne1b | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℕ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∈ ℕ ) |
| 3 | eluz2b3 | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑖 ∈ ℕ ∧ 𝑖 ≠ 1 ) ) | |
| 4 | neneq | ⊢ ( 𝑖 ≠ 1 → ¬ 𝑖 = 1 ) | |
| 5 | 3 4 | simplbiim | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ¬ 𝑖 = 1 ) |
| 6 | 5 | anim1ci | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) |
| 7 | 2 6 | jca | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) |
| 8 | neqne | ⊢ ( ¬ 𝑖 = 1 → 𝑖 ≠ 1 ) | |
| 9 | 8 | anim1ci | ⊢ ( ( ¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ ) → ( 𝑖 ∈ ℕ ∧ 𝑖 ≠ 1 ) ) |
| 10 | 9 3 | sylibr | ⊢ ( ( ¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 | 10 | ex | ⊢ ( ¬ 𝑖 = 1 → ( 𝑖 ∈ ℕ → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) → ( 𝑖 ∈ ℕ → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 13 | 12 | impcom | ⊢ ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) |
| 15 | simprrl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) → ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) | |
| 16 | 14 15 | jca | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) ) |
| 18 | 7 17 | impbid2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ↔ ( 𝑖 ∈ ℕ ∧ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) ) |
| 19 | 18 | rexbidv2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ∃ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ) ) |
| 20 | rexanali | ⊢ ( ∃ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ↔ ¬ ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) | |
| 21 | 20 | a1i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ∧ ¬ 𝑖 = 1 ) ↔ ¬ ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ) ) |
| 22 | coprmgcdb | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) | |
| 23 | 22 | necon3bbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ ∀ 𝑖 ∈ ℕ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝑖 = 1 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 24 | 19 21 23 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |