This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prmdvdsncoprmbd.a | |- ( ph -> A e. NN ) |
|
| prmdvdsncoprmbd.b | |- ( ph -> B e. NN ) |
||
| Assertion | prmdvdsncoprmbd | |- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> ( A gcd B ) =/= 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdvdsncoprmbd.a | |- ( ph -> A e. NN ) |
|
| 2 | prmdvdsncoprmbd.b | |- ( ph -> B e. NN ) |
|
| 3 | prmuz2 | |- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
|
| 4 | 3 | a1i | |- ( ph -> ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) ) |
| 5 | 4 | anim1d | |- ( ph -> ( ( p e. Prime /\ ( p || A /\ p || B ) ) -> ( p e. ( ZZ>= ` 2 ) /\ ( p || A /\ p || B ) ) ) ) |
| 6 | 5 | reximdv2 | |- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) -> E. p e. ( ZZ>= ` 2 ) ( p || A /\ p || B ) ) ) |
| 7 | breq1 | |- ( p = i -> ( p || A <-> i || A ) ) |
|
| 8 | breq1 | |- ( p = i -> ( p || B <-> i || B ) ) |
|
| 9 | 7 8 | anbi12d | |- ( p = i -> ( ( p || A /\ p || B ) <-> ( i || A /\ i || B ) ) ) |
| 10 | 9 | cbvrexvw | |- ( E. p e. ( ZZ>= ` 2 ) ( p || A /\ p || B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) |
| 11 | 6 10 | imbitrdi | |- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) -> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) |
| 12 | exprmfct | |- ( i e. ( ZZ>= ` 2 ) -> E. p e. Prime p || i ) |
|
| 13 | 12 | ad2antrl | |- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> E. p e. Prime p || i ) |
| 14 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p e. NN ) |
| 16 | 15 | nnzd | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p e. ZZ ) |
| 17 | eluzelz | |- ( i e. ( ZZ>= ` 2 ) -> i e. ZZ ) |
|
| 18 | 17 | ad2antrr | |- ( ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) /\ p || i ) -> i e. ZZ ) |
| 19 | 18 | ad4ant24 | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i e. ZZ ) |
| 20 | 1 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> A e. NN ) |
| 21 | 20 | nnzd | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> A e. ZZ ) |
| 22 | simpr | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || i ) |
|
| 23 | simprrl | |- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> i || A ) |
|
| 24 | 23 | ad2antrr | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i || A ) |
| 25 | 16 19 21 22 24 | dvdstrd | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || A ) |
| 26 | 2 | ad3antrrr | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> B e. NN ) |
| 27 | 26 | nnzd | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> B e. ZZ ) |
| 28 | simprrr | |- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> i || B ) |
|
| 29 | 28 | ad2antrr | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i || B ) |
| 30 | 16 19 27 22 29 | dvdstrd | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || B ) |
| 31 | 25 30 | jca | |- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> ( p || A /\ p || B ) ) |
| 32 | 31 | ex | |- ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) -> ( p || i -> ( p || A /\ p || B ) ) ) |
| 33 | 32 | reximdva | |- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> ( E. p e. Prime p || i -> E. p e. Prime ( p || A /\ p || B ) ) ) |
| 34 | 13 33 | mpd | |- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> E. p e. Prime ( p || A /\ p || B ) ) |
| 35 | 34 | rexlimdvaa | |- ( ph -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) -> E. p e. Prime ( p || A /\ p || B ) ) ) |
| 36 | 11 35 | impbid | |- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) |
| 37 | ncoprmgcdne1b | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |
|
| 38 | 1 2 37 | syl2anc | |- ( ph -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |
| 39 | 36 38 | bitrd | |- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> ( A gcd B ) =/= 1 ) ) |