This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prinfzo0 | ⊢ ( 𝑀 ∈ ℤ → ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz3 | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) | |
| 2 | fznuz | ⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑀 ) → ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑀 ∈ ℤ → ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 4 | 3 | 3mix1d | ⊢ ( 𝑀 ∈ ℤ → ( ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁 ) ) |
| 5 | 3ianor | ⊢ ( ¬ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ↔ ( ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁 ) ) | |
| 6 | elfzo2 | ⊢ ( 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ↔ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) | |
| 7 | 5 6 | xchnxbir | ⊢ ( ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ↔ ( ¬ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁 ) ) |
| 8 | 4 7 | sylibr | ⊢ ( 𝑀 ∈ ℤ → ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 9 | incom | ⊢ ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑀 } ) | |
| 10 | 9 | eqeq1i | ⊢ ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑀 } ) = ∅ ) |
| 11 | disjsn | ⊢ ( ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 13 | 8 12 | sylibr | ⊢ ( 𝑀 ∈ ℤ → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 14 | fzonel | ⊢ ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) | |
| 15 | 14 | a1i | ⊢ ( 𝑀 ∈ ℤ → ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 16 | incom | ⊢ ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑁 } ) | |
| 17 | 16 | eqeq1i | ⊢ ( ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) |
| 18 | disjsn | ⊢ ( ( ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) | |
| 19 | 17 18 | bitri | ⊢ ( ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ¬ 𝑁 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 20 | 15 19 | sylibr | ⊢ ( 𝑀 ∈ ℤ → ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 21 | df-pr | ⊢ { 𝑀 , 𝑁 } = ( { 𝑀 } ∪ { 𝑁 } ) | |
| 22 | 21 | ineq1i | ⊢ ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ( ( { 𝑀 } ∪ { 𝑁 } ) ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) |
| 23 | 22 | eqeq1i | ⊢ ( ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( { 𝑀 } ∪ { 𝑁 } ) ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |
| 24 | undisj1 | ⊢ ( ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ∧ ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) ↔ ( ( { 𝑀 } ∪ { 𝑁 } ) ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) | |
| 25 | 23 24 | bitr4i | ⊢ ( ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ↔ ( ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ∧ ( { 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) ) |
| 26 | 13 20 25 | sylanbrc | ⊢ ( 𝑀 ∈ ℤ → ( { 𝑀 , 𝑁 } ∩ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ) = ∅ ) |