This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prinfzo0 | |- ( M e. ZZ -> ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz3 | |- ( M e. ZZ -> M e. ( M ... M ) ) |
|
| 2 | fznuz | |- ( M e. ( M ... M ) -> -. M e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 3 | 1 2 | syl | |- ( M e. ZZ -> -. M e. ( ZZ>= ` ( M + 1 ) ) ) |
| 4 | 3 | 3mix1d | |- ( M e. ZZ -> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) |
| 5 | 3ianor | |- ( -. ( M e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ZZ /\ M < N ) <-> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) |
|
| 6 | elfzo2 | |- ( M e. ( ( M + 1 ) ..^ N ) <-> ( M e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ZZ /\ M < N ) ) |
|
| 7 | 5 6 | xchnxbir | |- ( -. M e. ( ( M + 1 ) ..^ N ) <-> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) |
| 8 | 4 7 | sylibr | |- ( M e. ZZ -> -. M e. ( ( M + 1 ) ..^ N ) ) |
| 9 | incom | |- ( { M } i^i ( ( M + 1 ) ..^ N ) ) = ( ( ( M + 1 ) ..^ N ) i^i { M } ) |
|
| 10 | 9 | eqeq1i | |- ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( ( M + 1 ) ..^ N ) i^i { M } ) = (/) ) |
| 11 | disjsn | |- ( ( ( ( M + 1 ) ..^ N ) i^i { M } ) = (/) <-> -. M e. ( ( M + 1 ) ..^ N ) ) |
|
| 12 | 10 11 | bitri | |- ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> -. M e. ( ( M + 1 ) ..^ N ) ) |
| 13 | 8 12 | sylibr | |- ( M e. ZZ -> ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
| 14 | fzonel | |- -. N e. ( ( M + 1 ) ..^ N ) |
|
| 15 | 14 | a1i | |- ( M e. ZZ -> -. N e. ( ( M + 1 ) ..^ N ) ) |
| 16 | incom | |- ( { N } i^i ( ( M + 1 ) ..^ N ) ) = ( ( ( M + 1 ) ..^ N ) i^i { N } ) |
|
| 17 | 16 | eqeq1i | |- ( ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( ( M + 1 ) ..^ N ) i^i { N } ) = (/) ) |
| 18 | disjsn | |- ( ( ( ( M + 1 ) ..^ N ) i^i { N } ) = (/) <-> -. N e. ( ( M + 1 ) ..^ N ) ) |
|
| 19 | 17 18 | bitri | |- ( ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> -. N e. ( ( M + 1 ) ..^ N ) ) |
| 20 | 15 19 | sylibr | |- ( M e. ZZ -> ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
| 21 | df-pr | |- { M , N } = ( { M } u. { N } ) |
|
| 22 | 21 | ineq1i | |- ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) |
| 23 | 22 | eqeq1i | |- ( ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
| 24 | undisj1 | |- ( ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) /\ ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) <-> ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
|
| 25 | 23 24 | bitr4i | |- ( ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) /\ ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) ) |
| 26 | 13 20 25 | sylanbrc | |- ( M e. ZZ -> ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |