This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime-counting function ppi at a prime. (Contributed by Mario Carneiro, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppiprm | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( ( π ‘ 𝐴 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... 𝐴 ) ∈ Fin ) | |
| 2 | inss1 | ⊢ ( ( 2 ... 𝐴 ) ∩ ℙ ) ⊆ ( 2 ... 𝐴 ) | |
| 3 | ssfi | ⊢ ( ( ( 2 ... 𝐴 ) ∈ Fin ∧ ( ( 2 ... 𝐴 ) ∩ ℙ ) ⊆ ( 2 ... 𝐴 ) ) → ( ( 2 ... 𝐴 ) ∩ ℙ ) ∈ Fin ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 5 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℝ ) |
| 7 | 6 | ltp1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 8 | peano2z | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 10 | 9 | zred | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 11 | 6 10 | ltnled | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 < ( 𝐴 + 1 ) ↔ ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
| 12 | 7 11 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 13 | elinel1 | ⊢ ( ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) → ( 𝐴 + 1 ) ∈ ( 2 ... 𝐴 ) ) | |
| 14 | elfzle2 | ⊢ ( ( 𝐴 + 1 ) ∈ ( 2 ... 𝐴 ) → ( 𝐴 + 1 ) ≤ 𝐴 ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 16 | 12 15 | nsyl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 17 | ovex | ⊢ ( 𝐴 + 1 ) ∈ V | |
| 18 | hashunsng | ⊢ ( ( 𝐴 + 1 ) ∈ V → ( ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∈ Fin ∧ ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) = ( ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) + 1 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∈ Fin ∧ ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) = ( ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) + 1 ) ) |
| 20 | 4 16 19 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) = ( ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) + 1 ) ) |
| 21 | ppival2 | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( π ‘ ( 𝐴 + 1 ) ) = ( ♯ ‘ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) | |
| 22 | 9 21 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( ♯ ‘ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) |
| 23 | 2z | ⊢ 2 ∈ ℤ | |
| 24 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℂ ) |
| 26 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 27 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) | |
| 28 | 25 26 27 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 29 | prmuz2 | ⊢ ( ( 𝐴 + 1 ) ∈ ℙ → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 31 | uz2m1nn | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) |
| 33 | 28 32 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℕ ) |
| 34 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 35 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 36 | 35 | fveq2i | ⊢ ( ℤ≥ ‘ ( 2 − 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 37 | 34 36 | eqtr4i | ⊢ ℕ = ( ℤ≥ ‘ ( 2 − 1 ) ) |
| 38 | 33 37 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) |
| 39 | fzsuc2 | ⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) | |
| 40 | 23 38 39 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 41 | 40 | ineq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ∩ ℙ ) ) |
| 42 | indir | ⊢ ( ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) | |
| 43 | 41 42 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) ) |
| 44 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℙ ) | |
| 45 | 44 | snssd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → { ( 𝐴 + 1 ) } ⊆ ℙ ) |
| 46 | dfss2 | ⊢ ( { ( 𝐴 + 1 ) } ⊆ ℙ ↔ ( { ( 𝐴 + 1 ) } ∩ ℙ ) = { ( 𝐴 + 1 ) } ) | |
| 47 | 45 46 | sylib | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( { ( 𝐴 + 1 ) } ∩ ℙ ) = { ( 𝐴 + 1 ) } ) |
| 48 | 47 | uneq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 49 | 43 48 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 50 | 49 | fveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) = ( ♯ ‘ ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) ) |
| 51 | 22 50 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( ♯ ‘ ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) ) |
| 52 | ppival2 | ⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) | |
| 53 | 52 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| 54 | 53 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( π ‘ 𝐴 ) + 1 ) = ( ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) + 1 ) ) |
| 55 | 20 51 54 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( ( π ‘ 𝐴 ) + 1 ) ) |