This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppival2 | ⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 2 | ppival | ⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
| 4 | ppisval | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 6 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝐴 ∈ ℤ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( 2 ... 𝐴 ) ) |
| 8 | 7 | ineq1d | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝐴 ∈ ℤ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ ℤ → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| 11 | 3 10 | eqtrd | ⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |