This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime-counting function ppi at a prime. (Contributed by Mario Carneiro, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppiprm | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( ( ppi ` A ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... A ) e. Fin ) |
|
| 2 | inss1 | |- ( ( 2 ... A ) i^i Prime ) C_ ( 2 ... A ) |
|
| 3 | ssfi | |- ( ( ( 2 ... A ) e. Fin /\ ( ( 2 ... A ) i^i Prime ) C_ ( 2 ... A ) ) -> ( ( 2 ... A ) i^i Prime ) e. Fin ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... A ) i^i Prime ) e. Fin ) |
| 5 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 6 | 5 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. RR ) |
| 7 | 6 | ltp1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A < ( A + 1 ) ) |
| 8 | peano2z | |- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
|
| 9 | 8 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ZZ ) |
| 10 | 9 | zred | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. RR ) |
| 11 | 6 10 | ltnled | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A < ( A + 1 ) <-> -. ( A + 1 ) <_ A ) ) |
| 12 | 7 11 | mpbid | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) <_ A ) |
| 13 | elinel1 | |- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) e. ( 2 ... A ) ) |
|
| 14 | elfzle2 | |- ( ( A + 1 ) e. ( 2 ... A ) -> ( A + 1 ) <_ A ) |
|
| 15 | 13 14 | syl | |- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) <_ A ) |
| 16 | 12 15 | nsyl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) |
| 17 | ovex | |- ( A + 1 ) e. _V |
|
| 18 | hashunsng | |- ( ( A + 1 ) e. _V -> ( ( ( ( 2 ... A ) i^i Prime ) e. Fin /\ -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) -> ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( ( ( ( 2 ... A ) i^i Prime ) e. Fin /\ -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) -> ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) |
| 20 | 4 16 19 | syl2anc | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) |
| 21 | ppival2 | |- ( ( A + 1 ) e. ZZ -> ( ppi ` ( A + 1 ) ) = ( # ` ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) |
|
| 22 | 9 21 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( # ` ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) |
| 23 | 2z | |- 2 e. ZZ |
|
| 24 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 25 | 24 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. CC ) |
| 26 | ax-1cn | |- 1 e. CC |
|
| 27 | pncan | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
|
| 28 | 25 26 27 | sylancl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) = A ) |
| 29 | prmuz2 | |- ( ( A + 1 ) e. Prime -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
|
| 30 | 29 | adantl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
| 31 | uz2m1nn | |- ( ( A + 1 ) e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) - 1 ) e. NN ) |
|
| 32 | 30 31 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) e. NN ) |
| 33 | 28 32 | eqeltrrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. NN ) |
| 34 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 35 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 36 | 35 | fveq2i | |- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
| 37 | 34 36 | eqtr4i | |- NN = ( ZZ>= ` ( 2 - 1 ) ) |
| 38 | 33 37 | eleqtrdi | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. ( ZZ>= ` ( 2 - 1 ) ) ) |
| 39 | fzsuc2 | |- ( ( 2 e. ZZ /\ A e. ( ZZ>= ` ( 2 - 1 ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
|
| 40 | 23 38 39 | sylancr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
| 41 | 40 | ineq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) ) |
| 42 | indir | |- ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) |
|
| 43 | 41 42 | eqtrdi | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) ) |
| 44 | simpr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. Prime ) |
|
| 45 | 44 | snssd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> { ( A + 1 ) } C_ Prime ) |
| 46 | dfss2 | |- ( { ( A + 1 ) } C_ Prime <-> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
|
| 47 | 45 46 | sylib | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
| 48 | 47 | uneq2d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
| 49 | 43 48 | eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
| 50 | 49 | fveq2d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( # ` ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) = ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) ) |
| 51 | 22 50 | eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) ) |
| 52 | ppival2 | |- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
|
| 53 | 52 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
| 54 | 53 | oveq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ppi ` A ) + 1 ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) |
| 55 | 20 51 54 | 3eqtr4d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( ( ppi ` A ) + 1 ) ) |