This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime-counting function ppi at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppinprm | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( π ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) | |
| 2 | 1 | elin2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ℙ ) |
| 3 | simprl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ¬ ( 𝐴 + 1 ) ∈ ℙ ) | |
| 4 | nelne2 | ⊢ ( ( 𝑥 ∈ ℙ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → 𝑥 ≠ ( 𝐴 + 1 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ≠ ( 𝐴 + 1 ) ) |
| 6 | velsn | ⊢ ( 𝑥 ∈ { ( 𝐴 + 1 ) } ↔ 𝑥 = ( 𝐴 + 1 ) ) | |
| 7 | 6 | necon3bbii | ⊢ ( ¬ 𝑥 ∈ { ( 𝐴 + 1 ) } ↔ 𝑥 ≠ ( 𝐴 + 1 ) ) |
| 8 | 5 7 | sylibr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ¬ 𝑥 ∈ { ( 𝐴 + 1 ) } ) |
| 9 | 1 | elin1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( 2 ... ( 𝐴 + 1 ) ) ) |
| 10 | 2z | ⊢ 2 ∈ ℤ | |
| 11 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℂ ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 16 | elfzuz2 | ⊢ ( 𝑥 ∈ ( 2 ... ( 𝐴 + 1 ) ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) | |
| 17 | uz2m1nn | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) | |
| 18 | 9 16 17 | 3syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) |
| 19 | 15 18 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℕ ) |
| 20 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 21 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 22 | 21 | fveq2i | ⊢ ( ℤ≥ ‘ ( 2 − 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 23 | 20 22 | eqtr4i | ⊢ ℕ = ( ℤ≥ ‘ ( 2 − 1 ) ) |
| 24 | 19 23 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) |
| 25 | fzsuc2 | ⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) | |
| 26 | 10 24 25 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 27 | 9 26 | eleqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 28 | elun | ⊢ ( 𝑥 ∈ ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ↔ ( 𝑥 ∈ ( 2 ... 𝐴 ) ∨ 𝑥 ∈ { ( 𝐴 + 1 ) } ) ) | |
| 29 | 27 28 | sylib | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( 𝑥 ∈ ( 2 ... 𝐴 ) ∨ 𝑥 ∈ { ( 𝐴 + 1 ) } ) ) |
| 30 | 29 | ord | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( ¬ 𝑥 ∈ ( 2 ... 𝐴 ) → 𝑥 ∈ { ( 𝐴 + 1 ) } ) ) |
| 31 | 8 30 | mt3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( 2 ... 𝐴 ) ) |
| 32 | 31 2 | elind | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 33 | 32 | expr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) → 𝑥 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| 34 | 33 | ssrdv | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ⊆ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 35 | uzid | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 37 | peano2uz | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 38 | fzss2 | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 2 ... 𝐴 ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) ) | |
| 39 | ssrin | ⊢ ( ( 2 ... 𝐴 ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) → ( ( 2 ... 𝐴 ) ∩ ℙ ) ⊆ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) | |
| 40 | 36 37 38 39 | 4syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... 𝐴 ) ∩ ℙ ) ⊆ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 41 | 34 40 | eqssd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ♯ ‘ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| 43 | peano2z | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 45 | ppival2 | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( π ‘ ( 𝐴 + 1 ) ) = ( ♯ ‘ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( ♯ ‘ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) |
| 47 | ppival2 | ⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) | |
| 48 | 47 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| 49 | 42 46 48 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝐴 + 1 ) ) = ( π ‘ 𝐴 ) ) |