This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| pmod.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| pmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmodN | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 ∩ ( 𝑌 + ( 𝑋 ∩ 𝑍 ) ) ) = ( ( 𝑋 ∩ 𝑌 ) + ( 𝑋 ∩ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | pmod.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | pmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 4 | incom | ⊢ ( 𝑋 ∩ ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ) = ( ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ∩ 𝑋 ) | |
| 5 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 7 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 8 | inss2 | ⊢ ( 𝑋 ∩ 𝑍 ) ⊆ 𝑍 | |
| 9 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) | |
| 10 | 8 9 | sstrid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 ∩ 𝑍 ) ⊆ 𝐴 ) |
| 11 | 1 3 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ ( 𝑋 ∩ 𝑍 ) ⊆ 𝐴 ) → ( 𝑌 + ( 𝑋 ∩ 𝑍 ) ) = ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ) |
| 12 | 6 7 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + ( 𝑋 ∩ 𝑍 ) ) = ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ) |
| 13 | 12 | ineq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 ∩ ( 𝑌 + ( 𝑋 ∩ 𝑍 ) ) ) = ( 𝑋 ∩ ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ) ) |
| 14 | incom | ⊢ ( 𝑋 ∩ 𝑌 ) = ( 𝑌 ∩ 𝑋 ) | |
| 15 | 14 | oveq2i | ⊢ ( ( 𝑋 ∩ 𝑍 ) + ( 𝑋 ∩ 𝑌 ) ) = ( ( 𝑋 ∩ 𝑍 ) + ( 𝑌 ∩ 𝑋 ) ) |
| 16 | inss2 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 | |
| 17 | 16 7 | sstrid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝐴 ) |
| 18 | 1 3 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝐴 ∧ ( 𝑋 ∩ 𝑍 ) ⊆ 𝐴 ) → ( ( 𝑋 ∩ 𝑌 ) + ( 𝑋 ∩ 𝑍 ) ) = ( ( 𝑋 ∩ 𝑍 ) + ( 𝑋 ∩ 𝑌 ) ) ) |
| 19 | 6 17 10 18 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ∩ 𝑌 ) + ( 𝑋 ∩ 𝑍 ) ) = ( ( 𝑋 ∩ 𝑍 ) + ( 𝑋 ∩ 𝑌 ) ) ) |
| 20 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ∈ 𝑆 ) | |
| 21 | 10 7 20 | 3jca | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ∩ 𝑍 ) ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) |
| 22 | inss1 | ⊢ ( 𝑋 ∩ 𝑍 ) ⊆ 𝑋 | |
| 23 | 1 2 3 | pmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ∩ 𝑍 ) ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) → ( ( 𝑋 ∩ 𝑍 ) ⊆ 𝑋 → ( ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ∩ 𝑋 ) = ( ( 𝑋 ∩ 𝑍 ) + ( 𝑌 ∩ 𝑋 ) ) ) ) |
| 24 | 22 23 | mpi | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ∩ 𝑍 ) ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) → ( ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ∩ 𝑋 ) = ( ( 𝑋 ∩ 𝑍 ) + ( 𝑌 ∩ 𝑋 ) ) ) |
| 25 | 21 24 | syldan | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ∩ 𝑋 ) = ( ( 𝑋 ∩ 𝑍 ) + ( 𝑌 ∩ 𝑋 ) ) ) |
| 26 | 15 19 25 | 3eqtr4a | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ∩ 𝑌 ) + ( 𝑋 ∩ 𝑍 ) ) = ( ( ( 𝑋 ∩ 𝑍 ) + 𝑌 ) ∩ 𝑋 ) ) |
| 27 | 4 13 26 | 3eqtr4a | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 ∩ ( 𝑌 + ( 𝑋 ∩ 𝑍 ) ) ) = ( ( 𝑋 ∩ 𝑌 ) + ( 𝑋 ∩ 𝑍 ) ) ) |