This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmod.a | |- A = ( Atoms ` K ) |
|
| pmod.s | |- S = ( PSubSp ` K ) |
||
| pmod.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmodN | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( ( X i^i Y ) .+ ( X i^i Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmod.a | |- A = ( Atoms ` K ) |
|
| 2 | pmod.s | |- S = ( PSubSp ` K ) |
|
| 3 | pmod.p | |- .+ = ( +P ` K ) |
|
| 4 | incom | |- ( X i^i ( ( X i^i Z ) .+ Y ) ) = ( ( ( X i^i Z ) .+ Y ) i^i X ) |
|
| 5 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 6 | 5 | adantr | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> K e. Lat ) |
| 7 | simpr2 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
|
| 8 | inss2 | |- ( X i^i Z ) C_ Z |
|
| 9 | simpr3 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
|
| 10 | 8 9 | sstrid | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i Z ) C_ A ) |
| 11 | 1 3 | paddcom | |- ( ( K e. Lat /\ Y C_ A /\ ( X i^i Z ) C_ A ) -> ( Y .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ Y ) ) |
| 12 | 6 7 10 11 | syl3anc | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ Y ) ) |
| 13 | 12 | ineq2d | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( X i^i ( ( X i^i Z ) .+ Y ) ) ) |
| 14 | incom | |- ( X i^i Y ) = ( Y i^i X ) |
|
| 15 | 14 | oveq2i | |- ( ( X i^i Z ) .+ ( X i^i Y ) ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) |
| 16 | inss2 | |- ( X i^i Y ) C_ Y |
|
| 17 | 16 7 | sstrid | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i Y ) C_ A ) |
| 18 | 1 3 | paddcom | |- ( ( K e. Lat /\ ( X i^i Y ) C_ A /\ ( X i^i Z ) C_ A ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ ( X i^i Y ) ) ) |
| 19 | 6 17 10 18 | syl3anc | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ ( X i^i Y ) ) ) |
| 20 | simpr1 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> X e. S ) |
|
| 21 | 10 7 20 | 3jca | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) |
| 22 | inss1 | |- ( X i^i Z ) C_ X |
|
| 23 | 1 2 3 | pmod1i | |- ( ( K e. HL /\ ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) -> ( ( X i^i Z ) C_ X -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) ) |
| 24 | 22 23 | mpi | |- ( ( K e. HL /\ ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) |
| 25 | 21 24 | syldan | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) |
| 26 | 15 19 25 | 3eqtr4a | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( ( X i^i Z ) .+ Y ) i^i X ) ) |
| 27 | 4 13 26 | 3eqtr4a | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( ( X i^i Y ) .+ ( X i^i Z ) ) ) |