This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| pmod.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| pmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmod2iN | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 ⊆ 𝑋 → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | pmod.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | pmod.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 4 | incom | ⊢ ( 𝑋 ∩ 𝑌 ) = ( 𝑌 ∩ 𝑋 ) | |
| 5 | 4 | oveq1i | ⊢ ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( ( 𝑌 ∩ 𝑋 ) + 𝑍 ) |
| 6 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝐾 ∈ Lat ) |
| 8 | simp22 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝑌 ⊆ 𝐴 ) | |
| 9 | ssinss1 | ⊢ ( 𝑌 ⊆ 𝐴 → ( 𝑌 ∩ 𝑋 ) ⊆ 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( 𝑌 ∩ 𝑋 ) ⊆ 𝐴 ) |
| 11 | simp23 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝑍 ⊆ 𝐴 ) | |
| 12 | 1 3 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∩ 𝑋 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 ∩ 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
| 13 | 7 10 11 12 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑌 ∩ 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
| 14 | 5 13 | eqtrid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
| 15 | simp21 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝑋 ∈ 𝑆 ) | |
| 16 | 11 8 15 | 3jca | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) |
| 17 | 1 2 3 | pmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝑍 ⊆ 𝑋 → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
| 19 | 16 18 | syld3an2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
| 20 | 1 3 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑍 + 𝑌 ) = ( 𝑌 + 𝑍 ) ) |
| 21 | 7 11 8 20 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( 𝑍 + 𝑌 ) = ( 𝑌 + 𝑍 ) ) |
| 22 | 21 | ineq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) ) |
| 23 | 14 19 22 | 3eqtr2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) ) |
| 24 | incom | ⊢ ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) | |
| 25 | 23 24 | eqtrdi | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) |
| 26 | 25 | 3expia | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 ⊆ 𝑋 → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) ) |