This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| pmapat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑃 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | pmapat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 4 | 3 1 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | 3 5 1 2 | pmapval | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑃 ) = { 𝑞 ∈ 𝐴 ∣ 𝑞 ( le ‘ 𝐾 ) 𝑃 } ) |
| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑞 ∈ 𝐴 ∣ 𝑞 ( le ‘ 𝐾 ) 𝑃 } ) |
| 8 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
| 10 | simpr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) | |
| 11 | simplr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) | |
| 12 | 5 1 | atcmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑞 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑞 = 𝑃 ) ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑞 = 𝑃 ) ) |
| 14 | 13 | rabbidva | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → { 𝑞 ∈ 𝐴 ∣ 𝑞 ( le ‘ 𝐾 ) 𝑃 } = { 𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃 } ) |
| 15 | rabsn | ⊢ ( 𝑃 ∈ 𝐴 → { 𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃 } = { 𝑃 } ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → { 𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃 } = { 𝑃 } ) |
| 17 | 7 14 16 | 3eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑃 } ) |