This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmap11.b | |- B = ( Base ` K ) |
|
| pmap11.m | |- M = ( pmap ` K ) |
||
| Assertion | pmap11 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmap11.b | |- B = ( Base ` K ) |
|
| 2 | pmap11.m | |- M = ( pmap ` K ) |
|
| 3 | eqss | |- ( ( M ` X ) = ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) ) |
|
| 4 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 5 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 6 | 1 5 | latasymb | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ( le ` K ) Y /\ Y ( le ` K ) X ) <-> X = Y ) ) |
| 7 | 4 6 | syl3an1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ( le ` K ) Y /\ Y ( le ` K ) X ) <-> X = Y ) ) |
| 8 | 1 5 2 | pmaple | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X ( le ` K ) Y <-> ( M ` X ) C_ ( M ` Y ) ) ) |
| 9 | 1 5 2 | pmaple | |- ( ( K e. HL /\ Y e. B /\ X e. B ) -> ( Y ( le ` K ) X <-> ( M ` Y ) C_ ( M ` X ) ) ) |
| 10 | 9 | 3com23 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( Y ( le ` K ) X <-> ( M ` Y ) C_ ( M ` X ) ) ) |
| 11 | 8 10 | anbi12d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ( le ` K ) Y /\ Y ( le ` K ) X ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) ) ) |
| 12 | 7 11 | bitr3d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X = Y <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) ) ) |
| 13 | 3 12 | bitr4id | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) ) |