This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnle0.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| atnle0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| atnle0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atnle0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ¬ 𝑃 ≤ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnle0.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | atnle0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 3 | atnle0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 7 | 6 2 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 9 | 6 3 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 11 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 12 | 2 11 3 | atcvr0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 13 | 6 1 11 | cvrnle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 0 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → ¬ 𝑃 ≤ 0 ) |
| 14 | 5 8 10 12 13 | syl31anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ¬ 𝑃 ≤ 0 ) |