This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1lmod.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| Assertion | ply1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lmod.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | fvi | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 3 | 1 | ply1sca | ⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 4 | 2 3 | eqtrd | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) ) |
| 5 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) | |
| 6 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) | |
| 7 | 6 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( Scalar ‘ ( Poly1 ‘ 𝑅 ) ) = ( Scalar ‘ ∅ ) ) |
| 8 | 1 | fveq2i | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( Poly1 ‘ 𝑅 ) ) |
| 9 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 10 | 9 | str0 | ⊢ ∅ = ( Scalar ‘ ∅ ) |
| 11 | 7 8 10 | 3eqtr4g | ⊢ ( ¬ 𝑅 ∈ V → ( Scalar ‘ 𝑃 ) = ∅ ) |
| 12 | 5 11 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) ) |
| 13 | 4 12 | pm2.61i | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |