This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1moncl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1moncl.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| ply1moncl.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| ply1moncl.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| ply1moncl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | ply1moncl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1moncl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1moncl.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | ply1moncl.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 4 | ply1moncl.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 5 | ply1moncl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 6 | 3 5 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑁 ) |
| 7 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 8 | 3 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd ) |
| 9 | 7 8 | syl | ⊢ ( 𝑅 ∈ Ring → 𝑁 ∈ Mnd ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝑁 ∈ Mnd ) |
| 11 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) | |
| 12 | 2 1 5 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 14 | 6 4 10 11 13 | mulgnn0cld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |