This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| ply1scl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ply1scl0.y | ⊢ 𝑌 = ( 0g ‘ 𝑃 ) | ||
| ply1scln0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | ply1scln0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐴 ‘ 𝑋 ) ≠ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | ply1scl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | ply1scl0.y | ⊢ 𝑌 = ( 0g ‘ 𝑃 ) | |
| 5 | ply1scln0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 7 | 1 2 5 6 | ply1sclf1 | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 –1-1→ ( Base ‘ 𝑃 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝐴 : 𝐾 –1-1→ ( Base ‘ 𝑃 ) ) |
| 9 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
| 10 | 5 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 0 ∈ 𝐾 ) |
| 12 | f1fveq | ⊢ ( ( 𝐴 : 𝐾 –1-1→ ( Base ‘ 𝑃 ) ∧ ( 𝑋 ∈ 𝐾 ∧ 0 ∈ 𝐾 ) ) → ( ( 𝐴 ‘ 𝑋 ) = ( 𝐴 ‘ 0 ) ↔ 𝑋 = 0 ) ) | |
| 13 | 8 9 11 12 | syl12anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑋 ) = ( 𝐴 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
| 14 | 13 | biimpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑋 ) = ( 𝐴 ‘ 0 ) → 𝑋 = 0 ) ) |
| 15 | 14 | necon3d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ≠ 0 → ( 𝐴 ‘ 𝑋 ) ≠ ( 𝐴 ‘ 0 ) ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐴 ‘ 𝑋 ) ≠ ( 𝐴 ‘ 0 ) ) |
| 17 | 1 2 3 4 | ply1scl0 | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = 𝑌 ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐴 ‘ 0 ) = 𝑌 ) |
| 19 | 16 18 | neeqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐴 ‘ 𝑋 ) ≠ 𝑌 ) |