This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scltm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| ply1scltm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| ply1scltm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| ply1scltm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| ply1scltm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| ply1scltm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| ply1scltm.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| Assertion | ply1scltm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 0 ↑ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scltm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | ply1scltm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | ply1scltm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 4 | ply1scltm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 5 | ply1scltm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 6 | ply1scltm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 7 | ply1scltm.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 8 | 2 | ply1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
| 9 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 10 | 9 1 | strfvi | ⊢ 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 11 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 12 | 7 8 10 4 11 | asclval | ⊢ ( 𝐹 ∈ 𝐾 → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 15 | 3 2 14 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 16 | 5 14 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) |
| 17 | 5 11 | ringidval | ⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑁 ) |
| 18 | 16 17 6 | mulg0 | ⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
| 19 | 15 18 | syl | ⊢ ( 𝑅 ∈ Ring → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐹 · ( 0 ↑ 𝑋 ) ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
| 22 | 13 21 | eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 0 ↑ 𝑋 ) ) ) |