This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting W = _V (if strong equality is known on .s ) or assuming K is a ring. (Contributed by Mario Carneiro, 5-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclpropd.f | ⊢ 𝐹 = ( Scalar ‘ 𝐾 ) | |
| asclpropd.g | ⊢ 𝐺 = ( Scalar ‘ 𝐿 ) | ||
| asclpropd.1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) | ||
| asclpropd.2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) | ||
| asclpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| asclpropd.4 | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) | ||
| asclpropd.5 | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ 𝑊 ) | ||
| Assertion | asclpropd | ⊢ ( 𝜑 → ( algSc ‘ 𝐾 ) = ( algSc ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclpropd.f | ⊢ 𝐹 = ( Scalar ‘ 𝐾 ) | |
| 2 | asclpropd.g | ⊢ 𝐺 = ( Scalar ‘ 𝐿 ) | |
| 3 | asclpropd.1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) | |
| 4 | asclpropd.2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) | |
| 5 | asclpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 6 | asclpropd.4 | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) | |
| 7 | asclpropd.5 | ⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ 𝑊 ) | |
| 8 | 5 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑃 ∧ ( 1r ‘ 𝐾 ) ∈ 𝑊 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) ) |
| 9 | 8 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑊 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) ) |
| 10 | 7 9 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) ) |
| 11 | 6 | oveq2d | ⊢ ( 𝜑 → ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
| 13 | 10 12 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑃 ) → ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
| 14 | 13 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) = ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) ) |
| 15 | 3 | mpteq1d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) ) |
| 16 | 4 | mpteq1d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑃 ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) ) |
| 17 | 14 15 16 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑧 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) ) |
| 18 | eqid | ⊢ ( algSc ‘ 𝐾 ) = ( algSc ‘ 𝐾 ) | |
| 19 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 20 | eqid | ⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) | |
| 21 | eqid | ⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) | |
| 22 | 18 1 19 20 21 | asclfval | ⊢ ( algSc ‘ 𝐾 ) = ( 𝑧 ∈ ( Base ‘ 𝐹 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ) ) |
| 23 | eqid | ⊢ ( algSc ‘ 𝐿 ) = ( algSc ‘ 𝐿 ) | |
| 24 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 25 | eqid | ⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) | |
| 26 | eqid | ⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) | |
| 27 | 23 2 24 25 26 | asclfval | ⊢ ( algSc ‘ 𝐿 ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑧 ( ·𝑠 ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
| 28 | 17 22 27 | 3eqtr4g | ⊢ ( 𝜑 → ( algSc ‘ 𝐾 ) = ( algSc ‘ 𝐿 ) ) |