This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1mpl1.m | ⊢ 𝑀 = ( 1o mPoly 𝑅 ) | |
| ply1mpl1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| ply1mpl1.o | ⊢ 1 = ( 1r ‘ 𝑃 ) | ||
| Assertion | ply1mpl1 | ⊢ 1 = ( 1r ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1mpl1.m | ⊢ 𝑀 = ( 1o mPoly 𝑅 ) | |
| 2 | ply1mpl1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | ply1mpl1.o | ⊢ 1 = ( 1r ‘ 𝑃 ) | |
| 4 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 6 | 2 5 | ply1bas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 7 | 1 | fveq2i | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 8 | 6 7 | eqtr4i | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑀 ) |
| 9 | 8 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑀 ) ) |
| 10 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 11 | 2 1 10 | ply1mulr | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑀 ) |
| 12 | 11 | a1i | ⊢ ( ⊤ → ( .r ‘ 𝑃 ) = ( .r ‘ 𝑀 ) ) |
| 13 | 12 | oveqdr | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) ) |
| 14 | 4 9 13 | rngidpropd | ⊢ ( ⊤ → ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑀 ) ) |
| 15 | 14 | mptru | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑀 ) |
| 16 | 3 15 | eqtri | ⊢ 1 = ( 1r ‘ 𝑀 ) |