This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrg1ascl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| subrg1ascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| subrg1ascl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrg1ascl.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | ||
| subrg1ascl.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrg1ascl.c | ⊢ 𝐶 = ( algSc ‘ 𝑈 ) | ||
| Assertion | subrg1ascl | ⊢ ( 𝜑 → 𝐶 = ( 𝐴 ↾ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1ascl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | subrg1ascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | subrg1ascl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 4 | subrg1ascl.u | ⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) | |
| 5 | subrg1ascl.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 6 | subrg1ascl.c | ⊢ 𝐶 = ( algSc ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 8 | 1 2 | ply1ascl | ⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
| 9 | eqid | ⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) | |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
| 12 | 4 6 | ply1ascl | ⊢ 𝐶 = ( algSc ‘ ( 1o mPoly 𝐻 ) ) |
| 13 | 7 8 3 9 11 5 12 | subrgascl | ⊢ ( 𝜑 → 𝐶 = ( 𝐴 ↾ 𝑇 ) ) |