This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | pjoml4i | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | inss1 | ⊢ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐵 | |
| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 6 | 4 5 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 7 | 2 6 | chincli | ⊢ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 8 | 7 2 1 | chlej2i | ⊢ ( ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐵 → ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 9 | 3 8 | ax-mp | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 10 | 1 7 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 11 | 1 2 | chdmm1i | ⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 12 | 11 | ineq1i | ⊢ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) |
| 13 | incom | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) | |
| 14 | 12 13 | eqtri | ⊢ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 15 | 14 | oveq2i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 16 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 17 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 18 | 17 2 | pjoml2i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 ) |
| 19 | 16 18 | ax-mp | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 |
| 20 | 15 19 | eqtr3i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = 𝐵 |
| 21 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 22 | 17 1 7 | chlej1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 23 | 21 22 | ax-mp | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 24 | 20 23 | eqsstrri | ⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 25 | 1 7 | chjcli | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ Cℋ |
| 26 | 1 2 25 | chlubii | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 27 | 10 24 26 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 28 | 9 27 | eqssi | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |