This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chdmm1i | ⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 | 3 4 | chub1i | ⊢ ( ⊥ ‘ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 6 | 3 4 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 7 | 1 6 | chsscon1i | ⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 ) |
| 8 | 5 7 | mpbi | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 |
| 9 | 4 3 | chub2i | ⊢ ( ⊥ ‘ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 10 | 2 6 | chsscon1i | ⊢ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ↔ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐵 ) |
| 11 | 9 10 | mpbi | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐵 |
| 12 | 8 11 | ssini | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( 𝐴 ∩ 𝐵 ) |
| 13 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 14 | 6 13 | chsscon1i | ⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
| 15 | 12 14 | mpbi | ⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 16 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 17 | 13 1 | chsscon3i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 18 | 16 17 | mpbi | ⊢ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
| 19 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 20 | 13 2 | chsscon3i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 21 | 19 20 | mpbi | ⊢ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
| 22 | 13 | choccli | ⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ Cℋ |
| 23 | 3 4 22 | chlubii | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 24 | 18 21 23 | mp2an | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
| 25 | 15 24 | eqssi | ⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |