This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | pjoml5i | ⊢ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 4 | 1 2 | chjcli | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 5 | 1 4 | pjoml2i | ⊢ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 6 | 3 5 | ax-mp | ⊢ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |