This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| chlub.1 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | chlej1i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | chlub.1 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 5 | 2 | chshii | ⊢ 𝐵 ∈ Sℋ |
| 6 | 3 | chshii | ⊢ 𝐶 ∈ Sℋ |
| 7 | 4 5 6 | shlej1i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |