This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | pjoml4i | |- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) = ( A vH B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | inss1 | |- ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B |
|
| 4 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 5 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 6 | 4 5 | chjcli | |- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
| 7 | 2 6 | chincli | |- ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) e. CH |
| 8 | 7 2 1 | chlej2i | |- ( ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) C_ B -> ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH B ) ) |
| 9 | 3 8 | ax-mp | |- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH B ) |
| 10 | 1 7 | chub1i | |- A C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
| 11 | 1 2 | chdmm1i | |- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 12 | 11 | ineq1i | |- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) |
| 13 | incom | |- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) = ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
|
| 14 | 12 13 | eqtri | |- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) |
| 15 | 14 | oveq2i | |- ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
| 16 | inss2 | |- ( A i^i B ) C_ B |
|
| 17 | 1 2 | chincli | |- ( A i^i B ) e. CH |
| 18 | 17 2 | pjoml2i | |- ( ( A i^i B ) C_ B -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B ) |
| 19 | 16 18 | ax-mp | |- ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B |
| 20 | 15 19 | eqtr3i | |- ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) = B |
| 21 | inss1 | |- ( A i^i B ) C_ A |
|
| 22 | 17 1 7 | chlej1i | |- ( ( A i^i B ) C_ A -> ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) ) |
| 23 | 21 22 | ax-mp | |- ( ( A i^i B ) vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
| 24 | 20 23 | eqsstrri | |- B C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
| 25 | 1 7 | chjcli | |- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) e. CH |
| 26 | 1 2 25 | chlubii | |- ( ( A C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) /\ B C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) ) -> ( A vH B ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) ) |
| 27 | 10 24 26 | mp2an | |- ( A vH B ) C_ ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) |
| 28 | 9 27 | eqssi | |- ( A vH ( B i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) ) = ( A vH B ) |