This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | ||
| Assertion | pjcji | ⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | |
| 4 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
| 5 | 1 2 4 | pjssmii | ⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( 𝐴 −ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) ) |
| 7 | 3 2 | pjpoi | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) |
| 8 | 7 | oveq2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 9 | 4 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ℋ |
| 10 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 11 | 9 10 | hvnegdii | ⊢ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) |
| 12 | 11 | oveq2i | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( 𝐴 +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 13 | hvaddsub12 | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) = ( 𝐴 +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) ) | |
| 14 | 10 2 9 13 | mp3an | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) = ( 𝐴 +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 15 | 12 14 | eqtr4i | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 16 | 8 15 | eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 17 | 9 10 | hvsubcli | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 18 | 2 17 | hvsubvali | ⊢ ( 𝐴 −ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 19 | 16 18 | eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝐴 −ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 20 | 1 3 | chjcomi | ⊢ ( 𝐻 ∨ℋ 𝐺 ) = ( 𝐺 ∨ℋ 𝐻 ) |
| 21 | 3 1 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( 𝐺 ∨ℋ 𝐻 ) |
| 22 | 20 21 | eqtr4i | ⊢ ( 𝐻 ∨ℋ 𝐺 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 23 | 22 | fveq2i | ⊢ ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) = ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 24 | 23 | fveq1i | ⊢ ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 ) |
| 25 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 26 | 4 25 | chincli | ⊢ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
| 27 | 26 2 | pjopi | ⊢ ( ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 28 | 24 27 | eqtri | ⊢ ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 29 | 6 19 28 | 3eqtr4g | ⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) ) |
| 30 | 29 | eqcomd | ⊢ ( 𝐻 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐻 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |