This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection on a subspace join is the sum of the projections. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjsslem.1 | |- G e. CH |
||
| Assertion | pjcji | |- ( H C_ ( _|_ ` G ) -> ( ( projh ` ( H vH G ) ) ` A ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjsslem.1 | |- G e. CH |
|
| 4 | 3 | choccli | |- ( _|_ ` G ) e. CH |
| 5 | 1 2 4 | pjssmii | |- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
| 6 | 5 | oveq2d | |- ( H C_ ( _|_ ` G ) -> ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) ) |
| 7 | 3 2 | pjpoi | |- ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) |
| 8 | 7 | oveq2i | |- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 9 | 4 2 | pjhclii | |- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ~H |
| 10 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 11 | 9 10 | hvnegdii | |- ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) |
| 12 | 11 | oveq2i | |- ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 13 | hvaddsub12 | |- ( ( ( ( projh ` H ) ` A ) e. ~H /\ A e. ~H /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ~H ) -> ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) ) |
|
| 14 | 10 2 9 13 | mp3an | |- ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 15 | 12 14 | eqtr4i | |- ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 16 | 8 15 | eqtr4i | |- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) |
| 17 | 9 10 | hvsubcli | |- ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
| 18 | 2 17 | hvsubvali | |- ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) |
| 19 | 16 18 | eqtr4i | |- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 20 | 1 3 | chjcomi | |- ( H vH G ) = ( G vH H ) |
| 21 | 3 1 | chdmm4i | |- ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) = ( G vH H ) |
| 22 | 20 21 | eqtr4i | |- ( H vH G ) = ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) |
| 23 | 22 | fveq2i | |- ( projh ` ( H vH G ) ) = ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) |
| 24 | 23 | fveq1i | |- ( ( projh ` ( H vH G ) ) ` A ) = ( ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) ` A ) |
| 25 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 26 | 4 25 | chincli | |- ( ( _|_ ` G ) i^i ( _|_ ` H ) ) e. CH |
| 27 | 26 2 | pjopi | |- ( ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) ` A ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
| 28 | 24 27 | eqtri | |- ( ( projh ` ( H vH G ) ) ` A ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
| 29 | 6 19 28 | 3eqtr4g | |- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( ( projh ` ( H vH G ) ) ` A ) ) |
| 30 | 29 | eqcomd | |- ( H C_ ( _|_ ` G ) -> ( ( projh ` ( H vH G ) ) ` A ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |