This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddsub12 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 −ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 2 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐶 ∈ ℋ → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
| 4 | hvadd12 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) | |
| 5 | 3 4 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 6 | hvsubval | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 7 | 6 | oveq2d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 9 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ ( 𝐴 −ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ ( 𝐴 −ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 12 | 5 8 11 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( 𝐵 +ℎ ( 𝐴 −ℎ 𝐶 ) ) ) |