This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 6-Oct-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjadji | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ) |
| 4 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 10 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 11 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 12 | 1 10 11 | pjadjii | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 13 | 5 9 12 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |