This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement projection in terms of projection. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjop.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjop.2 | ⊢ 𝐴 ∈ ℋ | ||
| Assertion | pjopi | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjop.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjop.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjop | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |