This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| isclm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | isclm | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | isclm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | fvexd | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) | |
| 4 | fvexd | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) ∈ V ) | |
| 5 | id | ⊢ ( 𝑓 = ( Scalar ‘ 𝑤 ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 8 | 5 7 | sylan9eqr | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑓 = 𝐹 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = 𝐹 ) |
| 10 | id | ⊢ ( 𝑘 = ( Base ‘ 𝑓 ) → 𝑘 = ( Base ‘ 𝑓 ) ) | |
| 11 | 8 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 13 | 10 12 | sylan9eqr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = 𝐾 ) |
| 14 | 13 | oveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ℂfld ↾s 𝑘 ) = ( ℂfld ↾s 𝐾 ) ) |
| 15 | 9 14 | eqeq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑓 = ( ℂfld ↾s 𝑘 ) ↔ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 16 | 13 | eleq1d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑘 ∈ ( SubRing ‘ ℂfld ) ↔ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| 17 | 15 16 | anbi12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 18 | 4 17 | sbcied | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 19 | 3 18 | sbcied | ⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 20 | df-clm | ⊢ ℂMod = { 𝑤 ∈ LMod ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ 𝑘 ∈ ( SubRing ‘ ℂfld ) ) } | |
| 21 | 19 20 | elrab2 | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 22 | 3anass | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑊 ∈ LMod ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) ) | |
| 23 | 21 22 | bitr4i | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |