This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pgrpsubgsymgbi.g | ||
| pgrpsubgsymgbi.b | |||
| Assertion | pgrpsubgsymgbi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | ||
| 2 | pgrpsubgsymgbi.b | ||
| 3 | 2 | issubg | |
| 4 | 3anass | ||
| 5 | 3 4 | bitri | |
| 6 | 1 | symggrp | |
| 7 | ibar | ||
| 8 | 7 | bicomd | |
| 9 | 6 8 | syl | |
| 10 | 5 9 | bitrid |